二维码
分享按钮
QC检测仪器网|www.qctester.com
首页: 产品中心: 资讯频道: 展会频道: 市场研究: 供求信息: 新品介绍: 企业名录: 技术文章: 检测机构
专家解答: 学会协会: 行业资料: 电子样本: 期刊书库: 资料下载: English: QC视频: QC杂志: QC访谈: 邮寄现场
注册会员 会员中心
登陆企业
仪器搜索
热门关键字: 量仪量具  无损检测  物理测试  力学测试  材料试验  光学仪器  设备诊断监测  表面处理检测  环境检测  化学分析  实验室仪器  仪表类  超声波探伤仪
您现在的位置:首页 >  技术文章  > 客户成果 | CT助力高性能连续玻璃纤维增强PEEK复合材料的力学性能研究

客户成果 | CT助力高性能连续玻璃纤维增强PEEK复合材料的力学性能研究

http://www.qctester.com/ 来源: 本站原创  浏览次数:2070 发布时间:2023-2-6 QC检测仪器网

热塑性复合材料,因其重量轻、抗冲击和韧性好、疲劳强度高、生产过程环保、可回收、生产效率高等诸多优势,是目前国家大力提倡的重点产业。连续纤维增强热塑性复合材料与传统的热塑性复合材料相比,各项力学性能更优异,产品广泛应用于航空航天、汽车船舶、轨道交通、城市基建、体育休闲等多个领域。设计和开发新型连续纤维增强热塑性复合材料是目前复合材料行业的研究热点。

由南京航空航天大学校长单忠德院士带领的团队,对连续玻璃纤维增强PEEK复合材料(CGFRPC)的增材制造工艺、机械性能和电气性能进行了深入研究。为了获得高强度复合长丝,团队采用来自三英精密的高精度X射线三维显微镜,对各种牵引速度下制备的复合长丝进行无损扫描,对复合长丝的形态和微观结构进行了表征,研究了牵引速度对制备过程中复合长丝的形态和力学性能的影响。所获得的结果有望使CGFRPC的增材制造技术,满足于航空航天和电子设备制造领域所需的高强度条件,该期刊的影响因子高达9.62!

1. 方法

 

1.1 CGFRPC长丝的制备

首先在双螺杆挤出和浸渍设备上制备CGFRPC长丝。PEEK颗粒通过双螺杆挤出机塑化成熔融状态,然后进入并填充浸渍模具。同时,CGF丝束在牵引装置的牵引作用下进入具有弯曲流道的浸渍模具,经预热装置干燥后浸渍peek树脂。随后,CGFRPCs长丝通过出口模头被拉出,冷却后由卷绕装置收集。为了研究牵引速度对复合长丝的微观结构和力学性能的影响,以600Tex CGF为原料生产了6种不同牵引速度的复合长丝。以300Tex连续玻璃纤维为原料,以4.13 mm/s的牵引速度生产复合长丝,用于研究纤维尺寸对复合材料试样力学性能的影响。其中,制备的两种尺寸CGFRPC长丝的工艺参数见表1。

表1 300Tex和600Tex复合长丝的制备工艺参数

1.2 实验方法

采用中国天津三英精密仪器股份有限公司生产的nanoVoxel-3000高精度X射线三维显微镜,对各种牵引速度制备的复合长丝进行分辨率为0.8 μm的无损扫描。然后,利用ImageJ软件对重建后的各长丝数据进行可视化数据分析,以获得长丝的切片图像,以及提取纤维、纤维/树脂复合材料和孔隙的3D模型,并分析切片图像和3D模型,进而评估长丝中的纤维体积分数和孔隙率。

三英精密nanoVoxel-3000显微CT

2. 结果

 

2.1 复合长丝力学性能

为研究牵引速度对复合长丝强度和微观形态的影响,制备了不少于5个具有相同参数、但牵引速度不同的复合长丝拉伸试样(图1(a))。由图1(b)中不同牵引速度下形成的长丝的拉伸应力-应变曲线看出:随着牵引速度的降低,长丝的抗拉强度越来越大,当牵引速度为2.77 mm/s时,长丝的抗拉强度最大,断裂伸长率达到最大值4.39%。

图1 CGFRPCs长丝在不同牵引速度下的力学性能:(a)复合长丝拉伸试样(b)不同牵引速度下长丝的应力-应变曲线 (c)拉伸载荷 (d)拉伸强度和模量
1 (c) 和 (d) 中的绘图结果表明:长丝的平均拉伸载荷和拉伸强度随着牵引速度的降低而增加。例如,牵引速度为2.77 mm/s时,长丝的平均拉伸载荷、拉伸强度和拉伸模量分别达到473.34 N、665.8 MPa和23.57 GPa。拉伸载荷和强度随牵引速度的降低而增大,可以解释为较慢的牵引速度有利于树脂充分浸渍到纤维中,并提高单根纤维与树脂之间的界面强度。拉伸模量基本不随牵引速度的变化而变化,尽管在7.64 mm/s的牵引速度下观察到了最低拉伸载荷,但拉伸强度并未达到最低值,拉伸模量达到最大值28.04 GPa。这是由于在这个参数下长丝的横截面积最小,纤维含量相对较高。如图1(b) 所示,以7.64 mm/s 的速度配置的长丝的应力-应变曲线要陡峭得多,表明模量相对较高。

2.2 复合长丝剖面结构

如图2复合长丝剖面图所示,牵引速度从11.25 mm/s降低到2.77 mm/s的过程中,长丝外轮廓的圆度越来越好。由于较高的牵引速度不利于复合材料在出口模头处的充分聚束,故以较高牵引速度形成的长丝通常具有不规则形状,例如扁平形状。而较低牵引速度形成的长丝的外轮廓虽然不是标准的圆形,但它们接近于出口模具内孔的形状。

过ImageJ 软件对不同牵引速度长丝的内部孔隙进行识别和标记,深色、浅色和红色分别代表树脂、玻璃纤维和内部孔隙。如图2(b)和(c)所示:较高的牵引速度往往会导致纤维和树脂的不均匀分布。由于纤维和树脂的集中分布不利于树脂充分浸渍到纤维中,影响了长丝的力学性能,故随着牵引速度的降低,纤维在树脂间的分布趋于均匀,长丝的机械强度逐渐提高。如图2(e)所示,没有孔隙的长丝,在低牵引速度下,细丝内部的孔隙面积不会随着牵引速度的变化而发生很大变化。

图2 牵引速度为(a) 11.25 mm/s (b) 7.64 mm/s (c) 6.75 mm/s (d) 5.4 mm/s (e) 4.13 mm/s (f) 2.77 mm/s时的复合长丝剖面图

过ImageJ 软件,计算出复合长丝在不同牵引速度下的物理参数(即纤维体积分数和孔隙率)如表2中所示。结果表明:纤维体积分数随着牵引速度的降低而减小,这是因为树脂对纤维的缓慢浸渍会导致长丝中的树脂增多。在这组实验中,纤维体积分数在32.19%~39.5%之间波动,最小值和最大值分别与4.13 mm/s和7.64 mm/s的长丝牵引速度相关。

表2 600Tex复合纤维在不同牵引速度下的物理参数

2.3 复合长丝内部结构三维分布

3中展示了不同牵引速度下复合长丝内纤维、纤维/树脂复合材料和孔隙的三维分布情况,其中树脂/纤维复合材料和孔隙的分布图,取自复合长丝内部截取的长方体。

据图3(a)可知,较高的牵引速度导致纤维在横截面上呈椭圆形分布,而在纵向截面上大多呈弯曲分布,从而在长丝内部产生一些孔隙。

牵引速度降低到6.75 mm/s时(见图3(b)),纤维和树脂在长丝中的分布仍然不均匀,还可以检测到树脂集中区域和孔隙,长丝中处于弯曲状态的纤维数量在纵向截面中有所减少。尽管7.64 mm/s长丝中的纤维分布优于11.25 mm/s长丝中的纤维分布,但对于牵引速度低于7.64 mm/s的长丝,仍不能保证纤维分布地更均匀。

在牵引速度为4.13 mm/s时(见图3(c)),纤维在横截面上呈圆形分布,在纵向截面上呈较直分布,此时长丝内部未见孔隙。

图3 在牵引速度为(a) 11.25 mm/s (b) 6.75 mm/s (c) 4.13 mm/s时,复合纤维的三维分布(左)、纤维/树脂结合(中)和孔隙(右)图

2.4 复合长丝孔隙三维形态表征

了对复合长丝中的孔隙进行三维形态表征,将含有明显孔隙的部分进行虚拟剖切,得到纵向剖面图(图4(a)和(b)),然后将纵向剖面图局部放大,以获得孔的形态(图4(c))。结果表明:复合长丝中的孔隙通常出现在纤维附近,且孔隙分布不连续、不均匀。由此推测:由于模具中的树脂分布不充分/不均匀,且纤维展开不充分,使得树脂与纤维相结合的位置容易出现气孔。

图4 (a)纵向剖切 (b)纵向剖面图(c)复合材料细丝孔隙形态

据三维图像计算的体孔隙率如表2所示,其中二维图像和部分三维图像计算的7.64 mm/s细丝孔隙率分别为0.25%和0。结果表明:气孔沿灯丝的径向分布也不均匀。此外,通过2D图像和部分3D图像计算得到的4.13 mm/s长丝的孔隙率近似为零,说明此时树脂已经很好地浸渍到纤维中,长丝中没有气孔。

表3 600Tex复合纤维在不同牵引速度下的物理参数

结 论

 

文设计了一种具有预热功能的双级加热喷嘴,以促进CGFRPCs长丝的熔解,提高试件的力学性能。为获得高强度复合材料长丝,借助三英精密的X射线三维CT,首次探讨了在制备过程中牵引速度对复合材料长丝的微观结构和力学性能的影响。

主要研究成果可归纳如下:较低的牵引速度有利于增强纤维在长丝中的分散性,提高长丝的圆度和机械强度。当牵引速度接近2.77 mm/s 时,长丝的抗拉强度达到最大值 665.8 MPa。
原文链接:https://www.sciencedirect.com/science/article/abs/pii/S1359836822006655                                                                                

一直以来,三英精密专注X射线CT成像技术和产品开发,致力于为用户提供解决问题的新方法和新工具,今后也将继续为科研人员提供更强大的助力!

 相关信息

意见箱:
       
如果您对我们的稿件有什么建议或意见,请发送意见至qctester@126.com(注明网络部:建议或意见),或拨打电话:010-64385345转网络部;如果您的建设或意见被采纳,您将会收到我们送出的一份意见的惊喜!

①凡本网注明“来源:QC检测仪器网”之内容,版权属于QC检测仪器网,未经本网授权不得转载、摘编或以其它方式使用。
②来源未填写“QC检测仪器网”之内容,均由会员发布或转载自其它媒体,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接或连带责任。如从本网下载使用,必须保留本网注明的“稿件来源”,并自负版权等相关责任。
③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

热点新闻 行业资讯 政策法规
市场研究 行业资料 技术讲座
展会知识 战略合作 技术标准
展会资讯 更多 
遇见未来实验室,共探科技新纪元 20
VisionChina2025(上海
AMTS & AHTE South
科技盛典,洞“析”奥秘 2024慕尼
2024 慕尼黑上海分析生化展 逛
距离2025最近的一场电子信息行业盛
观众登记启动|优解制造未来,锁定20
聚力向新,抢抓3月机床采购季
开幕倒计时8天,第104届中国电子展
2024慕尼黑上海分析生化展 | 展
矩阵
行业资讯 更多 
“点亮梦想之光”青少年科教公益行进博
进博快报 | 瑞典商会领导嘉宾到访海
擎画未来 千人齐聚「蔡司全球质量创新
“组合拳”出击!突破电池膜球面高精度
数字驱动产业升级 | 第四届产品数字
创新交锋 蔡司全球质量创新峰会剧透第
30周年 | InnovMetric
守护生命之盾:医疗器械行业的质量精准
海克斯康亮相航空计量测试与检验检测发
航空业案例 | 三维扫描和增强现实技
权威!海克斯康QUINDOS软件荣获
2024年《财富》中国科技50强公布
热销仪器
检测仪器 检验仪器 测量仪器 测试仪器 无损检测 无损探伤 材料检测 材料试验 检测材料 几何量仪器
邮箱:(E-mail)QCtester#126.com   京ICP备12009517号-5  | 京公网安备11010502024614
北京考斯泰仪器信息有限公司   电  话:(Tel)010-58440895 /   
Copyright © 2009 QCtester.com Inc.All Rights Reserved. GoogleSitemap QC检测仪器网 版权所有
检测仪器备案信息  检测仪器行业  测量仪器  检测网