1、气孔类缺陷的形成及解决
1.1 气孔缺陷
图1为一种中间体铸件的铸造工艺示意图,材质为HT250,图中看出,该工艺法兰竖直放置,侧面设置冒口进行补缩,同时在铸件上表面设计排气溢流冒口。图2为铸件的砂芯,采用组芯工艺,由外壳芯和两个内腔砂芯组成,内腔砂芯采用高强度低发气覆膜砂制作。表1统计生产结果表明,气孔为该铸件的主要缺陷,约占到料废件总数的60%。铸件气孔缺陷如图3所示,图3a为铸件上表面分布的气孔,且能明显看到铸件表面质量较差,图3b为铸件内腔上表面的侵入性大气孔。
图1原工艺方案
图2 铸件砂芯示意图
表1 加工料废缺陷统计数据
检查数
|
气孔不良率
|
气孔
|
粘砂
|
砂眼
|
16
|
100%
|
16
|
0
|
0
|
12
|
33%
|
4
|
2
|
0
|
65
|
32%
|
21
|
2
|
1
|
图3 铸件上表面典型的气孔类缺陷
1.2 气孔的形成原因
图4是铸件的砂芯组装图,从图2 中可以看出,水环芯尺寸较大、结构复杂,有两处厚大部位,制芯时难以完全固化,四个芯头较细小,无法做出砂芯排气通道,在浇注充型过程中容易砂芯会发出大量的气体,分析认为充型完成后水环芯持续发气,在浇注过程中发生呛火,使铁液沸腾产生氧化膜和气孔,其次是工艺朝上铸件表面形状复杂,壁厚不均,即使设计了溢流冒口,但由于溢流冒口颈部细长,排气面积较小,气体不能完全从冒口颈排出到溢流冒口中,因此在铸件的最上表面形成气孔、氧化夹杂物(按照双层膜理论[3],由于铁液在呛火过程中大量氧化,留在铸件中形成氧化夹杂物)。同时,浇注过程中砂芯发气在铁液中产生的气泡往上表面移动,停留在该处形成内腔气孔。
图4 铸件砂芯的结构图
1.3 气孔的解决
根据图4砂芯结构分析,水环芯与铸件的大法兰之间距离较近,且大法兰式平面且形状简单,可以放置较大的补缩冒口和溢流冒口,改进后的工艺见图5,该工艺改进后铸件复杂形状部位的气孔缺陷完全消除,就是在法兰的冒口根部时有大气孔产生,但分散性的小气孔明显减少。为了完全消除气孔,水环芯经过200℃烘烤2h,另外,浇注温度与气孔的关系相当密切,提高浇注温度可以有效增强气体的溢出能力,因此浇注温度由1380~1420℃提高至1420~1450℃。生产后,气孔缺陷不良率为6.2%。结果表明,通过改变工艺设计、二次烘芯、提高浇注温度等方法消除了气孔缺陷。
图5 改进后的工艺方案
2 、分析与讨论
2.1 发气量的影响
发气量大是覆膜砂的特点,覆膜砂的树脂加入量3%左右,比其他型砂的发气量大很多,在生产复杂砂芯的铸件时,通常选用低发气高强度覆膜砂,严格控制覆膜砂的发气量,目前高强度低发气量覆膜砂发气量可达13ml/g以下,但在一些情况下,即使采用低发气量覆膜砂,气孔问题也不能有效解决,主要是砂芯的实际发气量还与砂芯的重量、大小、形状有关。减少砂芯的恶实际发气量还与其他因素有关,首先,如图6所示,砂芯芯头掏空,制作排气通道,可以有效的减少发气量。但图中可以看出,砂芯下半部较大,中间较细小,该部位在浇注过程中产生的气体当无法有效排出,就会形成气孔缺陷,如图7所示,气孔呈较大的球形,分布在铸件内腔或浅表面。当砂芯的排气或掏空无法有效制作时,砂芯二次烘烤可以较大程度降低砂芯的实际发气量,如图6所示,右边的砂芯经过200℃烘烤2h,砂芯的颜色明显深一些,经过批量生产验证,气孔缺陷从30%降到3%以下。
图6一种中间体铸件的砂芯实物照片
图7 一种中间体铸件的气孔缺陷实物照片
2.2 工艺的影响
有些中间体铸件内腔形状复杂,砂芯完全被铁液包裹,而芯头排气能力十分有限。在充型过程中,砂芯大量发气,可分为二个阶段,第一阶段为充型初期铁液还未完全覆盖砂芯,此时砂芯产生的气体可以有效从型腔中排出,第二阶段为铁液完全覆盖砂芯,此时产生的气体必须要通过铁液溢出,才能防止气孔,但如果此时铁液开始凝固或表面产生较厚的氧化膜,气孔无法有效溢出,造成气孔。从图8看出,该铸件的砂芯较大,芯头非常细小,无法有效设置排气通道,当铸件法兰竖直放置时,冒口设置在侧面,此时铸件的上表面微形状复杂且壁厚不均的复杂形状面,且为零件的重点使用面,即使设置溢流冒口,但冒口颈较细长,气体不可能有效溢出,从而产生严重气孔缺陷。但大法兰形状简单且厚大,如果法兰水平放置,在砂芯的正上方法兰位置放置冒口,该冒口既是补缩冒口,也是溢流冒口,由于冒口的铁液温度高,不易凝固,大量气体仍可以有效溢出铸件,防止气孔产生。因此,对一些具有复杂砂芯的铸件,应该遵循壁厚较大,形状简单的部位朝上,有利于设置冒口,加强气体的溢出。
图8 一种中间体铸件和砂芯示意图
2.3 铁液温度的影响
从根本上来说,溢流冒口的合理设置可以使铁液中的气体能够有效溢出,但与铁液的温度又很大关系,铁液流动性差和表面氧化膜能够阻止气体的溢出,提高浇注温度可以延缓铁水表面氧化膜的生成和提高流动性,对防止气孔是非常有效的措施。笔者发现,把浇注温度由1380~1420℃提高至1420~1450℃,可以保证在铸件不产生收缩缺陷的前提下,尽可能延缓氧化膜形成的时间,气体能够有效溢出。因此在解决气孔类缺陷时,尤其是容易产生气孔的铸件,提高浇注温度是较有效的方案,是生产具有复杂覆膜砂砂芯汽车铸件的必要条件之一。
2.4 措施的有效性
气孔的产生的原因是砂芯或砂型的气体的释放,最终气体以气泡的形式停留在铸件内形成气孔缺陷,往往表现为气孔、呛火、局部凹陷、翘皮等气孔类缺陷。如何有效解决气孔是铸造工作者经常思考的问题,但往往解决方法比较片面。根据气孔形成的原因,假设浇注过程中气体能够全部排出,自然不会产生气孔,因此提出了“排、减、溢”的原则。首先,在浇注过程中气体能沿砂芯中的排气通道顺利排出,则不会产生气孔,因此,这种措施经常采用,这是“排”的原则。但是往往效果不好,因为即使制作了排气通道,产生的气体也不可能全部及时排出,这种方案无效。其次,针对复杂砂芯,尤其芯头较小的砂芯,无法设计排气通道时,减少砂芯的总的发气量体现了“减”的原则,有两种方式,第一是控制型砂本身的发气量,通常采用低发气量覆膜砂,这种方法在一定程度上减少气体的产生,但当砂芯较大,即使型砂的发气量较小,但砂芯实际发气量同样可以很大,但往往容易被忽视,一般工艺过程中为了保证制芯的效率,固化时间一般不可能很长,砂芯的断面一致性不好,里面的砂固化不充分,所以对砂芯采用二次烘烤是较为有效的方法,经验表明对砂芯进行180~220℃烘烤1~2h(烘烤后解剖砂芯断面,检查断面固化均匀性,反复试验可得到最佳烘烤参数。)可以有效降低砂芯的实际发气量,可以有效解决气孔问题。最后,当队医一些非常复杂的铸件,上述“排、减”原则都不能完全解决时,充分利用“溢”的原则,即在砂芯的正上方的厚大部位或简单部位设置补缩或溢流冒口,同时提高浇注温度可以有效提高气体的溢出能力,防止气孔的产生。因此,“排、减、溢”的原则依次采用是解决气孔的最有效方法,是制定具体解决措施的依据。
2 结论
(1)复杂汽车铸铁件生产中出现的气孔、呛火、局部凹陷、翘皮等气孔类缺陷是由于砂芯发气导致的,解决措施要遵循“排、减、溢”原则。
(2)砂芯的制作中首先考虑砂芯的排气通道,但对于芯头较细,体积较大的复杂砂芯,排气无法有效做出,采用180~220℃二次烘烤1~2h减少砂芯实际发气量是有效措施。
(3)对砂芯已经实施排气和二次烘烤,但气孔仍未有效解决的,在砂芯的正上方设置补缩或溢流冒口,使气体效溢出铁液,防止气孔产生。
(4)对于容易形成气孔的铸件,壁厚不均匀,形状复杂的重要铸件面不宜向上放置,而尽量使厚大部位或简单面向上并适当设置冒口,加强气体的溢出。
(5)在不引起其他铸造缺陷的前提下,提高浇注温度30~40℃可以显著提高气体的溢出能力,防止气孔的发生。