摘要:原子荧光光谱的产生及其类型。当自由原子吸收了特征波长的辐射之后被激发到较高能态,接着又以辐射形式去活化,就可以观察到原子荧光。原子荧光可分为三类:共振原子荧光、非共振原子荧光与敏化原子荧光。
1、共振原子荧光
原子吸收辐射受激后再发射相同波长的辐射,产生共振原子荧光。若原子经热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种共振原子荧光称为热助共振原子荧光。如In451.13nm就是这类荧光的例子。只有当基态是单一态,不存在中间能级,没有其它类型的荧光同时从同一激发态产生,才能产生共振原子荧光。共振原子荧光产生的过程如图3.15(a)所示。
2、非共振原子荧光
当激发原子的辐射波长与受激原子发射的荧光波长不相同时,产生非共振原子荧光。非共振原子荧光包括直跃线荧光、阶跃线荧光与反斯托克斯荧光,它们的发生过程分别见图3.15(b)、(c)、(d)。
直跃线荧光是激发态原子直接跃迁到高于基态的亚稳态时所发射的荧光,如Pb405.78nm。只有基态是多重态时,才能产生直跃线荧光。阶跃线荧光是激发态原子先以非辐射形式去活化方式回到较低的激发态,再以辐射形式去活化回到基态而发射的荧光;或者是原子受辐射激发到中间能态,再经热激发到高能态,然后通过辐射方式去活化回到低能态而发射的荧光。前一种阶跃线荧光称为正常阶跃线荧光,如Na589.6nm,后一种阶跃线荧光称为热助阶跃线荧光,如Bi293.8nm。反斯托克斯荧光是发射的荧光波长比激发辐射的波长短,如In 410.18nm。
3、敏化原子荧光
激发原子通过碰撞将其激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射荧光,此种荧光称为敏化原子荧光。火焰原子化器中的原子浓度很低,主要以非辐射方式去活化,因此观察不到敏化原子荧光。
在上述各类原子荧光中,共振原子荧光最强,在分析中应用最广。