进入传感器的氧气的流速取决于传感器顶部的毛细微孔的大小。当氧气到达工作电极时,它立刻被还原释放出氢氧根离子: O2 + 2H2O + 4e- 4OH-
这些氢氧根离子通过电解质到达阳极(铅),与铅发生氧化反应,生成对应的金属氧化物。 2Pb + 4OH- 2PbO + 2H2O + 4e-
上述两个反应发生生成电流,电流大小相应地取决于氧气反应速度(法拉第定律),可外接一只已知电阻来测量产生的电势差,这样就可以准确测量出氧气的浓度。
电化学反应中,铅极参与到氧化反应中,使得这些传感器具有一定的使用期限,一旦所有可利用的铅完全被氧化,传感器将停止运作。通常氧气传感器的使用寿命为1-2 年,但也可以通过增加阳极铅的含量或限制接触阳极的氧气量来延长传感器的使用寿命。 毛细微孔氧传感器和分压氧传感器
城市技术生产的氧气传感器根据进入传感器的氧气的扩散方式的不同分为两种,一种是在传感器顶部设有一毛细微孔,而另一种设有一层固体薄膜允许气体通过。细孔传感器测量的是氧气浓度,而固体薄膜传感器测量的是氧气的分压。
细孔传感器产生的电流反映的是被测氧气的体积百分比浓度,与气体总压力无关。但当氧气压力瞬间发生变化时,传感器会产生一个瞬间电流,如果没有控制好就会出现问题。同样的问题在传感器受到重复压力脉冲时也会出现,例如进入传感器的气体是抽运式的。对这个现象的解释如下所示: 压力瞬变
当细孔氧气传感器遇到急剧增压或减压,气体将被迫通过细孔栅板(大流量)。气体的增加(或减少)产生了一个瞬变电流信号。一旦情况重新稳定不再有压力脉冲,瞬变即告结束。此类瞬变可以通过仪器报警,这样CityTech就可以努力寻求解决方案以减小压力影响。
所有城市技术的细孔氧气传感器都采用了抗大流量机制,见图2。根本上来说,可以增加一个PTFE 抗大流量薄膜来减弱压力变化带来的瞬变影响。这层薄膜用一个金属盖或塑料盖紧紧固定在细孔上,这个设计可以很大程度上减少信号的瞬间变化影响。 |