系统简介:
表面光电压测试系统主要用于半导体粉末材料的光生电压性能的测试分析,可开展光催化等方面的机理研究,主要应用于测量光电功能材料的表面光伏、表面光电流、估算光电转换效率、研究光催化机理、光解水制氢、太阳能电池、光电气敏传感器等。
表面光电压谱与普通的通透射光谱不同,它是作用光谱,是利用调制光激发而产生光伏信号。因此所检测的信号包括两方面信息:一个是常见的光电压强度谱,它正比于样品的吸收光谱;另一个是相位角谱。 SPV信号的实质是对样品施加在强度上正弦调制的光脉冲,将会导致一个相同频率调制的,而且是正弦波的表面电势的变化。影响表面电势值的是少数载流子平均扩散距离内的光生电子或空穴,即Vspv在比少数载流子平均寿命更长的时间后才出现极值。因此,在人射光脉冲和 Vspv.的极值之间有一个时间延迟,也即相位差。
系统特点:
1. 模组化设计,紧扣用户需求,经济灵活,适用面广,升级、改造、维护均很方便;
2. 可选大功率卤钨灯或大功率氙灯光源,也可使用用户已有或指定的光源;
3. 独特的分光系统,保证良好的波长准确度和重复性,消除多级谱的影响,杂散光小;
4. 具有弱信号处理能力,可有效提高信噪比,保证测量精度;
5. 光路设计一体化、所有光路均在暗室中或封闭光路中进行,无外界杂光干扰
6. 自主研发高性能弱信号处理器,可配置进口直流信号隔离前置放大器,有效隔离偏光照射样品产生的直流分量,并可进行所有控制信号的自动切换。
7. 配套完整的全自动化专用系统软件
测试项目:
表面光电压SPV、表面光电流SPC、相位角。
测试样品:粉末状材料(主要代表有TiO2、ZnO、CdS、GaAs、CdTe、CdSe等)
技术背景:
表面光电压是固体表面的光生伏特效应,是光致电子跃迁的结果。
1876年,W.GAdam就发现了这一光致电子跃迁现象;1948年才将这一光生伏特效应作为光谱检测技术应用于半导体材料的特征参数和表面特性研究上,这种光谱技术称为表面电压技术(Surface Photovoltaic Technique,简称SPV)或表面光电压谱(Surface Photovoltaic Spectroscopy,简称SPS)。表面光电压技术是一种研究半导体特征参数的极佳途径,这种方法是通过对材料光致表面电压的改变进行分析来获得相关信息的。
1970年,表面光伏研究获得重大突破,美国麻省理工学院Gates教授的研究小组在用低于禁带宽度能量的光照射CdS表面时,历史性的第一次获得入射光波长与表面光电压的谱图,以此来确定表面态的能级,从而形成了表面光电压这一新的研究测试手段。
SPV技术是最灵敏的固体表面性质研究的方法之一,其特点是操作简单、再现性好、不污染样品,不破坏样品形貌,因而被广泛应用于解析光电材料光生电荷行为的研究中。
SPV技术所检测的信息主要是样品表层(一般为几十纳米)的性质,因此不受基底或本体的影响,这对光敏表面的性质及界面电子转移过程的研究显然很重要。由于表面电压技术的原理是基于检测由入射光诱导的表面电荷的变化,其检测灵敏度很高,而借助场诱导表面光电压谱技术可以用来测定半导体的导电类型(特别是有机半导体的导电类型)、半导体表面参数研究纳米晶体材料的光电特性,了解半导体光激发电荷分离和电荷转移过程,实现半导体的谱带解释,并为研究符合体系的光敏过程和光致界面电荷转移过程提供可行性方法。